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Interactive Medical Image Segmentation Using
Deep Learning With Image-Specific Fine Tuning
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Abstract— Convolutional neural networks (CNNs) have
achieved state-of-the-art performance for automatic
medical image segmentation. However, they have not
demonstrated sufficiently accurate and robust results for
clinical use. In addition, they are limited by the lack of
image-specific adaptation and the lack of generalizability
to previously unseen object classes (a.k.a. zero-shot
learning). To address these problems, we propose a novel
deep learning-based interactive segmentation framework
by incorporating CNNs into a bounding box and scribble-
based segmentation pipeline. We propose image-specific
fine tuning to make a CNN model adaptive to a specific test
image, which can be either unsupervised(without additional
user interactions) or supervised (with additional scribbles).
We also propose a weighted loss function considering
network and interaction-based uncertainty for the fine
tuning. We applied this framework to two applications:
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2-D segmentation of multiple organs from fetal magnetic
resonance (MR) slices, where only two types of these
organs were annotated for training and 3-D segmentation of
brain tumor core (excluding edema) and whole brain tumor
(including edema) from different MR sequences, where
only the tumor core in one MR sequence was annotated
for training. Experimental results show that: 1) our model
is more robust to segment previously unseen objects than
state-of-the-art CNNs; 2) image-specific fine tuning with
the proposed weighted loss function significantly improves
segmentation accuracy; and 3) our method leads to
accurate results with fewer user interactions and less user
time than traditional interactive segmentation methods.

Index Terms— Interactive image segmentation, convolu-
tional neural network, fine-tuning, fetal MRI, brain tumor.

I. INTRODUCTION

DEEP learning with convolutional neural networks
(CNNs) has achieved state-of-the-art performance for

automated medical image segmentation [1]. However, auto-
matic segmentation methods have not demonstrated suffi-
ciently accurate and robust results for clinical use due to
the inherent challenges of medical images, such as poor
image quality, different imaging and segmentation protocols,
and variations among patients [2]. Alternatively, interactive
segmentation methods are widely adopted, as they integrate
the user’s knowledge and take into account the application
requirements for more robust segmentation performance [2].
As such, interactive segmentation remains the state of the art
for existing commercial surgical planning and navigation prod-
ucts. Though leveraging user interactions often leads to more
robust segmentations, an interactive method should require as
short user time as possible to reduce the burden on users.
Motivated by these observations, we investigate combining
CNNs with user interactions for medical image segmentation
to achieve higher segmentation accuracy and robustness with
fewer user interactions and less user time. However, there are
very few studies on using CNNs for interactive segmenta-
tion [3]–[5]. This is mainly due to the requirement of large
amounts of annotated images for training, the lack of image-
specific adaptation and the demanding balance among model
complexity, inference time and memory space efficiency.

The first challenge of using CNNs for interactive segmenta-
tion is that current CNNs do not generalize well to previously
unseen object classes that are not present in the training set.
As a result, they require labeled instances of each object
class to be present in the training set. For medical images,
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annotations are often expensive to acquire as both expertise
and time are needed to produce accurate annotations. This
limits the performance of CNNs to segment objects for which
annotations are not available in the training stage.

Second, interactive segmentation often requires image-
specific learning to deal with large context variations among
different images, but current CNNs are not adaptive to dif-
ferent test images, as parameters of the model are learned
from training images and then fixed in the testing stage,
without image-specific adaptation. It has been shown that
image-specific adaptation of a pre-trained Gaussian Mixture
Model (GMM) helps to improve segmentation accuracy [6].
However, transitioning from simple GMMs to powerful but
complex CNNs in this context has not yet been demonstrated.

Third, fast inference and memory efficiency are demanded
for interactive segmentation. They can be relatively easily
achieved for 2D images, but become much more problematic
for 3D images. For example, DeepMedic [7] works on 3D
local patches to reduce memory requirements but results in a
slow inference. HighRes3DNet [8] works on 3D whole images
with relatively fast inference but needs a large amount of GPU
memory, leading to high hardware requirements. To make a
CNN-based interactive segmentation method efficient to use,
enabling CNNs to respond quickly to user interactions and
to work on a machine with limited GPU resources (e.g.,
a standard desktop PC or a laptop) is desirable. DeepIGeoS [5]
combines CNNs with user interactions and has demonstrated
good interactivity. However, it has a lack of adaptability to
unseen image contexts.

This paper presents a new framework to address these
challenges for deep learning-based interactive segmentation.
To generalize to previously unseen objects, we propose a
bounding-box-based segmentation pipeline that extracts the
foreground from a given region of interest, and design a 2D
and a 3D CNN with good compactness to avoid over-fitting.
To make CNNs adaptive to different test images, we propose
image-specific fine-tuning. In addition, our networks consider
a balance among receptive field, inference time and memory
efficiency so as to be responsive to user interactions and have
low requirements in terms of GPU resources.

A. Contributions

The contributions of this work are four-fold. First, we pro-
pose a novel deep learning-based framework for interactive 2D
and 3D medical image segmentation by incorporating CNNs
into a bounding box and scribble-based binary segmentation
pipeline. Second, we propose image-specific fine-tuning to
adapt a CNN model to each test image independently. The
fine-tuning can be either unsupervised (without additional user
interactions) or supervised by user-provided scribbles. Third,
we propose a weighted loss function considering network
and interaction-based uncertainty during the image-specific
fine-tuning. Fourth, we present the first attempt to employ
CNNs to deal with previously unseen objects (a.k.a. zero-
shot learning) in the context of image segmentation. The
proposed framework does not require all the object classes
to be annotated for training. Thus, it can be applied to new
organs or new segmentation protocols directly.

B. Related Works

1) CNNs for Image Segmentation: For natural image
segmentation, FCN [9] and DeepLab [10] are among the
state-of-the-art performing methods. For 2D biomedical
image segmentation, efficient networks such as U-Net [11],
DCAN [12] and Nabla-net [13] have been proposed. For
3D volumes, patch-based CNNs have been proposed for
segmentation of the brain tumor [7] and pancreas [14], and
more powerful end-to-end 3D CNNs include V-Net [15],
HighRes3DNet [8], and 3D deeply supervised network [16].

2) Interactive Segmentation Methods: A wide range of
interactive segmentation methods have been proposed [2].
Representative methods include Graph Cuts [17], Random
Walks [18] and GeoS [19]. Machine learning has been popu-
larly used to achieve high accuracy and interaction efficiency.
For example, GMMs are used by GrabCut [20] to segment
color images. Online Random Forests (ORFs) are employed
by Slic-Seg [21] for placenta segmentation from fetal Magnetic
Resonance images (MRI). In [22], active learning is used
to segment 3D Computed Tomography (CT) images. They
have achieved more accurate segmentations with fewer user
interactions than traditional interactive segmentation methods.

To combine user interactions with CNNs, DeepCut [3] and
ScribbleSup [23] propose to leverage user-provided bounding
boxes or scribbles, but they employ user interactions as sparse
annotations for the training set rather than as guidance for
dealing with test images. 3D U-Net [24] learns from anno-
tations of some slices in a volume and produces a dense
3D segmentation, but is not responsive to user interactions.
In [4], an FCN is combined with user interactions for 2D RGB
image segmentation, without adaptation for medical images.
DeepIGeoS [5] uses geodesic distance transforms of scribbles
as additional channels of CNNs for interactive segmentation,
but cannot deal with previously unseen object classes.

3) Model Adaptation: Previous learning-based interactive
segmentation methods often employ image-specific models.
For example, GrabCut [20] and Slic-Seg [21] learn from the
target image with GMMs and ORFs, respectively, so that they
can be well adapted to the specific target image. Learning a
model from a training set with image-specific adaptation in the
testing stage has also been used to improve the segmentation
performance. For example, an adaptive GMM has been used to
address the distribution mismatch between the training and test
images [6]. For CNNs, fine-tuning [25] is used for domain-
wise model adaptation to address the distribution mismatch
between different training sets. However, to the best of our
knowledge, this paper is the first work to propose image-
specific model adaptation for CNNs.

II. METHOD

The proposed interactive framework with Bounding box and
Image-specific Fine-tuning-based Segmentation (BIFSeg) is
depicted in Fig. 1. To deal with different (including previously
unseen) objects in a unified framework, we propose to use
a CNN that takes as input the content of a bounding box
of one instance and gives a binary segmentation for that
instance. In the testing stage, the user provides a bounding
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Fig. 1. The proposed Bounding box and Image-specific Fine-tuning-based Segmentation (BIFSeg). 2D images are shown as examples. During
training, each instance is cropped with its bounding box, and the CNN is trained for binary segmentation. In the testing stage, image-specific
fine-tuning with optional scribbles and a weighted loss function is used. Note that the object class (e.g. maternal kidneys) for testing may have not
been present in the training set.

Fig. 2. Our resolution-preserving networks with dilated convolution for 2D segmentation (a) and 3D segmentation (b). The numbers in dark blue
boxes denote convolution kernel sizes and numbers of output channels, and the numbers on the top of these boxes denote dilation parameters.

box, and BIFSeg extracts the region inside the bounding
box and feeds it into the pre-trained CNN with a forward
pass to obtain an initial segmentation. This is based on
the fact that our CNNs are designed and trained to learn
some common features, such as saliency, contrast and hyper-
intensity, across different objects, which helps to generalize to
unseen objects. Then we use unsupervised (without additional
user interactions) or supervised (with user-provided scribbles)
image-specific fine-tuning to further refine the segmentation.
This is because there is likely a mismatch between the
common features learned from the training set and those
in (previously unseen) test objects. Therefore, we use fine-
tuning to leverage image-specific features and make our CNNs
adaptive to a specific test image for better segmentation. Our
framework is general, flexible and can handle both 2D and
3D segmentations with few assumptions of network structures.
In this paper, we choose to use the state-of-the-art network
structures proposed in [5] for their compactness and efficiency.

The contribution of BIFSeg is nonetheless largely different
from [5] as BIFSeg focuses on segmentation of previously
unseen object classes and fine-tunes the CNN model on the
fly for image-wise adaptation that can be guided by user
interactions.

A. CNN Models

For 2D images, we adopt the P-Net [5] for bounding
box-based binary segmentation. The network is resolution-
preserving using dilated convolution [10]. As shown in
Fig. 2(a), it consists of six blocks with a receptive field
of 181×181. The first five blocks have dilation parameters
of 1, 2, 4, 8 and 16, respectively, so they capture features at
different scales. Features from these five blocks are concate-
nated and fed into block6 that serves as a classifier. A softmax
layer is used to obtain probability-like outputs. In the testing
stage, we update the model based on image-specific fine-
tuning. To ensure efficient fine-tuning and fast response to
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user interactions, we only fine-tune parameters of the classifier
(block6). Thus, features in the concatenation layer for the test
image can be stored before the fine-tuning.

For 3D images, we use a network extended from P-Net,
as shown in Fig. 2(b). It considers a trade-off among receptive
field, inference time and memory efficiency. The network has
an anisotropic receptive field of 85×85×9. Compared with
slice-based networks, it employs 3D contexts. Compared with
large isotropic 3D receptive fields [8], it has less memory con-
sumption [26]. Besides, anisotropic acquisition is often used in
Magnetic Resonance (MR) imaging. We use 3×3×3 kernels
in the first two blocks and 3×3×1 kernels in block3 to block5.
Similar to P-Net, we fine-tune the classifier (block6) with pre-
computed concatenated features. To save space for storing
the concatenated features, we use 1×1×1 convolutions to
compress the features in block1 to block5 and then concatenate
them. We refer to this 3D network with feature compression
as PC-Net.

B. Training of CNNs

The training stage for 2D/3D segmentation is shown in the
first row of Fig. 1. Consider a K -ary segmentation training set
T = {(X1,Y1), (X2,Y2), . . .} where X p is one training image
and Yp is the corresponding label map. The label set of T is
{0, 1, 2, . . . , K −1} with 0 being the background label. Let Nk

denote the number of instances of the kth object type, so the
total number of instances is N̂ = ∑

k Nk . Each image X p can
have instances of multiple object classes. Suppose the label of
the qth instance in X p is l pq , Yp is converted into a binary
image Ypq based on whether the value of each pixel in Yp

equals to l pq . The bounding box Bpq of that training instance
is automatically calculated based on Ypq and expanded by
a random margin in the range of 0 to 10 pixels/voxels.
X p and Ypq are cropped based on Bpq . Thus, T is converted
into a cropped set T̂ = {(X̂1, Ŷ1), (X̂2, Ŷ2), . . .} with size
N̂ and label set {0, 1} where 1 is the label of the instance
foreground and 0 the background. With T̂ , the CNN model
(e.g., P-Net or PC-Net) is trained to extract the target from
its bounding box, which is a binary segmentation problem
irrespective of the object type. A cross entropy loss function
is used for training.

C. Unsupervised and Supervised Image-Specific
Fine-Tuning

In the testing stage, let X̂ denote the sub-image inside a
user-provided bounding box and Ŷ be the target label of X̂ .
The set of parameters of the trained CNN is θ . With the initial
segmentation Ŷ0 obtained by the trained CNN, the user may
provide (i.e., supervised) or not provide (i.e., unsupervised) a
set of scribbles to guide the update of Ŷ0. Let S f and Sb denote
the scribbles for foreground and background, respectively,
so the entire set of scribbles is S = S f ∪ Sb . Let si denote
the user-provided label of a pixel in the scribbles, then we
have si = 1 if i ∈ S f and si = 0 if i ∈ Sb . We minimize an
objective function that is similar to GrabCut [20] but we use

P-Net or PC-Net instead of a GMM:

arg min
Ŷ ,θ

⎧
⎨

⎩
E(Ŷ , θ) =

∑

i

φ(ŷi |X̂ , θ)+ λ
∑

i, j

ψ(ŷi , ŷ j |X̂)
⎫
⎬

⎭

subject to : ŷi = si if i ∈ S (1)

where E(Ŷ , θ) is constrained by user interactions if S is
not empty. φ and ψ are the unary and pairwise energy
terms, respectively. λ is the weight of ψ . An unconstrained
optimization of an energy similar to E was used in [3] for
weakly supervised learning. In that work, the energy was based
on the probability and label map of all the images in a training
set, which was a different task from ours, as we focus on a
single test image. We follow a typical choice of ψ [17]:

ψ(ŷi , ŷ j |X̂) = [ŷi �= ŷ j ]exp

(

− (X̂(i)− X̂( j))2

2σ 2

)

· 1

di j
(2)

where [·] is 1 if ŷi �= ŷ j and 0 otherwise. di j is the Euclidean
distance between pixel i and pixel j . σ controls the effect of
intensity difference. φ is defined as:

φ(ŷi |X̂ , θ) = −logP(ŷi |X̂ , θ)
= −

(
ŷi logpi + (1 − ŷi )log(1 − pi)

)
(3)

where P(ŷi |X̂ , θ) is the probability given by softmax output
of the CNN, and pi = P(ŷi = 1|X̂ , θ) is the probability of
pixel i belonging to the foreground.

The optimization of Eq. (1) can be decomposed into steps
that alternatively update the segmentation label Ŷ and network
parameters θ [3], [20]. In the label update step, we fix θ
and solve for Ŷ , and Eq. (1) becomes a Conditional Random
Field (CRF) problem:

arg min
Ŷ

⎧
⎨

⎩
E(θ) =

∑

i

φ(ŷi |X̂ , θ)+ λ
∑

i, j

ψ(ŷi , ŷ j |X̂)
⎫
⎬

⎭

subject to : ŷi = si if i ∈ S (4)

For implementation ease, the constrained optimization in
Eq. (4) is converted to an unconstrained equivalent:

arg min
Ŷ

⎧
⎨

⎩

∑

i

φ′(ŷi |X̂ , θ)+ λ
∑

i, j

ψ(ŷi , ŷ j |X̂)
⎫
⎬

⎭
(5)

φ′(ŷi |X̂ , θ) =

⎧
⎪⎨

⎪⎩

+∞ if i ∈ S and ŷi = si

0 if i ∈ S and ŷi �= si

−logP(ŷi |X̂ , θ) otherwise

(6)

Since θ and therefore φ′ are fixed, and ψ is submodular,
Eq. (5) can be solved by Graph Cuts [17]. In the network
update step, we fix Ŷ and solve for θ :

arg min
θ

{

E(Ŷ ) =
∑

i

φ(ŷi |X̂ , θ)
}

subject to : ŷi = si if i ∈ S (7)

Thanks to the constrained optimization in Eq. (4), the label
update step necessarily leads to ŷi = si for i ∈ S. Eq. (7) can
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be treated as an unconstrained optimization:

arg min
θ

{

−
∑

i

(
ŷi logpi + (1 − ŷi )log(1 − pi )

)
}

(8)

D. Weighted Loss Function During Network Update Step

During the network update step, the CNN is fine-tuned to
fit the current segmentation Ŷ . Differently from a standard
learning process that treats all the pixels equally, we propose to
weight different kinds of pixels considering their confidence.
First, user-provided scribbles have much higher confidence
than the other pixels, and they should have a higher impact
on the loss function, leading to a weighted version of Eq. (3):

φ(ŷi |X̂ , θ) = −w(i)logP(ŷi |X̂ , θ) (9)

w(i) =
{
ω if i ∈ S

1 otherwise
(10)

where ω ≥ 1 is the weight associated with scribbles. φ defined
in Eq. (9) allows Eq. (4) to remain unchanged for the label
update step. In the network update step, Eq. (8) becomes:

arg min
θ

{

−
∑

i

w(i)
(

ŷi logpi + (1 − ŷi )log(1 − pi)
)
}

(11)

Note that the energy optimization problem of Eq. (1) remains
well-posed with Eq. (9), (10), and (11).

Second, Ŷ may contain mis-classified pixels that can mis-
lead the network update process. To address this problem,
we propose to fine-tune the network by ignoring pixels
with high uncertainty (low confidence) in the test image.
We propose to use network-based uncertainty and scribble-
based uncertainty. The network-based uncertainty is based on
the network’s softmax output. Since ŷi is highly uncertain
(has low confidence) if pi is close to 0.5, we define the
set of pixels with high network-based uncertainty as Up =
{i |t0 < pi < t1} where t0 and t1 are the lower and higher
threshold values of foreground probability, respectively. The
scribble-based uncertainty is based on the geodesic distance
to scribbles. Let G(i, S f ) and G(i, Sb) denote the geodesic
distance [19] from pixel i to S f and Sb, respectively. Since
the scribbles are drawn on mis-segmented areas for refinement,
it is likely that pixels close to S have been incorrectly labeled
by the initial segmentation. Let ε be a threshold value for
the geodesic distance. We define the set of pixels with high
scribble-based uncertainty as Us = U f

s ∪ Ub
s where U f

s =
{i |i /∈ S,G(i, S f ) < ε, ŷi = 0}, Ub

s = {i |i /∈ S,G(i, Sb) <
ε, ŷi = 1}. Therefore, a full version of the weight function is
(an example is shown in Fig. 3):

w(i) =

⎧
⎪⎨

⎪⎩

ω if i ∈ S

0 if i ∈ Up ∪ Us

1 otherwise

(12)

The new definition of w(i) is well motivated in the network
update step. However, in the label update step, introducing
zero unary weights in Eq. (4) would make the label update of
corresponding pixels entirely driven by the pairwise potentials.
Therefore, we choose to keep Eq. (4) unchanged.

Fig. 3. An example of weight map for image-specific fine-tuning. The
weight is 0 for pixels with high uncertainty (black), ω for scribbles (white),
and 1 for the remaining pixels (gray).

E. Implementation Details

We used the Caffe1 [27] library to implement our P-Net
and PC-Net.2 The training process was done via one node
of the Emerald cluster3 with two 8-core E5-2623v3 Intel
Haswells, a K80 NVIDIA GPU and 128GB memory. To deal
with different organs and different modalities, the region inside
a bounding box was normalized by the mean value and
standard deviation of that region, and then used as the input
of the CNNs. In the training stage, the bounding box was
automatically generated based on the ground truth label with
a random margin in the range of 0 to 10 pixels/voxels. We used
cross entropy loss function and stochastic gradient decent with
momentum 0.9, batch size 1, weight decay 5×10−4, maximal
number of iterations 80k and initial learning 10−3 that was
halved every 5k iterations.

In the testing stage, the trained CNN models were deployed
to a MacBook Pro (OS X 10.9.5) with 16GB RAM, an Intel
Core i7 CPU running at 2.5GHz and an NVIDIA GeForce
GT 750M GPU. A Matlab GUI and a PyQt GUI were used
for user interactions on 2D and 3D images, respectively. For
image-specific fine-tuning, Ŷ and θ were alternatively updated
for four iterations. In each network update step, we used a
learning rate 10−2 and iteration number 20. We used a grid
search with the training data to get proper values of λ, σ , t0, t1,
ε and ω, and fixed them as global parameters during testing.
Their numerical values are listed in the specific experimental
sections III-B and III-C.

III. EXPERIMENTS AND RESULTS

We validated the proposed framework with two appli-
cations: 2D segmentation of multiple organs from fetal
MRI and 3D segmentation of brain tumors from contrast
enhanced T1-weighted (T1c) and Fluid-attenuated Inversion
Recovery (FLAIR) images. For both applications, we addition-
ally investigated the segmentation performance on previously
unseen objects that were not present in the training set.

A. Comparison Methods and Evaluation Metrics

To investigate the performance of different networks
with the same bounding box, we compared P-Net with
FCN [9] and U-Net [11] for 2D images, and compared
PC-Net with DeepMedic [7] and HighRes3DNet [8] for

1http://caffe.berkeleyvision.org
2Code available at: https://cmiclab.cs.ucl.ac.uk/GIFT-Surg/BIFSeg
3http://www.ses.ac.uk/high-performance-computing/emerald
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3D images.4 The original DeepMedic works on multiple
modalities, and we adapted it to work on a single modality.
All these methods were evaluated on the laptop during the
testing except for HighRes3DNet that was run on the cluster
due to the laptop’s limited GPU memory. To validate the
proposed unsupervised/supervised image-specific fine-tuning,
we compared BIFSeg with 1) the initial output of P-Net/
PC-Net, 2) post-processing the initial output with a CRF (using
user interactions as hard constraints if they were provided), and
3) image-specific fine-tuning based on Eq. (1) with w(i) = 1
for all the pixels, which is referred to as BIFSeg(-w).

BIFSeg was also compared with other interactive methods:
GrabCut [20], Slic-Seg [21] and Random Walks [18] for
2D segmentation, and GeoS [19], GrowCut [28] and 3D
GrabCut [29] for 3D segmentation. The 2D/3D GrabCut used
the same bounding box as used by BIFSeg, and they used
3 and 5 components for the foreground and background
GMMs, respectively. Slic-Seg, Random Walks, GeoS and
GrowCut required scribbles without a bounding box for seg-
mentation. The segmentation results by an Obstetrician and a
Radiologist were used for evaluation. For each method, each
user provided scribbles to update the result multiple times until
the user accepted it as the final segmentation. The Dice score
between a segmentation and the ground truth was used for
quantitative evaluations: Dice = 2|Ra ∩ Rb|/(|Ra| + |Rb|)
where Ra and Rb denote the region segmented by an algo-
rithm and the ground truth, respectively. We used a paired Stu-
dent’s t-test to determine whether the performance difference
between two segmentation methods was significant [30]. The
p-value, i.e., the probability of achieving a more extreme value
than the observed segmentation performance difference, when
the null hypothesis is true, was calculated for significance
assessment.

B. 2D Segmentation of Multiple Organs From Fetal MRI

1) Data: Single-shot Fast Spin Echo (SSFSE) was used to
acquire stacks of T2-weighted MR images from 18 patients
with pixel size 0.74 to 1.58 mm and inter-slice spacing 3 to
4 mm. Due to the large inter-slice spacing and inter-slice
motion, interactive 2D segmentation is more suitable than
direct 3D segmentation [21]. We performed data splitting
at patient level and used images from 10, 2, 6 patients for
training, validation and testing, respectively. The training set
consisted of 333 and 213 2D instances of the placenta and
fetal brain, respectively. The validation set contained 70, 25,
36 and 41 2D instances of the placenta, fetal brain, fetal lungs
and maternal kidneys, respectively. The testing set consisted
of 165, 80, 114 and 124 2D instances of the placenta, fetal
brain, fetal lungs and maternal kidneys, respectively. Here the
fetal brain and the placenta were previously seen objects, and
the fetal lungs and maternal kidneys were previously unseen
objects. Manual segmentations by a Radiologist were used as
the ground truth. The P-Net was used for this segmentation
task. The bounding boxes of organs in the training set had
an original side length of 98±59 pixels. To deal with organs
at different scales, we resized the input of P-Net so that the

4DeepMedic and HighRes3DNet were implemented in http://niftynet.io

Fig. 4. Evolution of cross entropy loss on training and validation
data during the training stage of different networks for 2D fetal MRI
segmentation. Fetal lungs and maternal kidneys were not present in the
training set.

minimal value of width and height was 96 pixels. In the testing
stage, the output of BIFSeg for one object was resized to fit
its bounding box in the original image. Parameter setting was
λ = 3.0, σ = 0.1, t0 = 0.2, t1 = 0.7, ε = 0.2, ω = 5.0 based
on a grid search with the training data (i.e., fetal lungs and
maternal kidneys were not used for parameter learning).

2) Initial Segmentation Based on P-Net: Fig. 4 presents the
evolution of the loss on the training and validation data with
FCN, U-Net and P-Net during the training stage. It shows that
FCN and U-Net tend to over-fit the placenta and fetal brain in
the training set, while P-Net generalizes better to previously
unseen fetal lungs and maternal kidneys in comparison. Fig. 5
shows the initial segmentation of different organs from fetal
MRI with user-provided bounding boxes. It can be observed
that GrabCut achieves a poor segmentation except for the fetal
brain where there is a good contrast between the target and
the background. For the placenta and fetal brain, FCN, U-Net
and P-Net achieve visually similar results that are close to the
ground truth. However, for fetal lungs and maternal kidneys
that are previously unseen in the training set, FCN and U-Net
lead to a large region of under-segmentation. In contrast, P-Net
performs noticeably better than FCN and U-Net when dealing
with these two unseen objects. A quantitative evaluation of
these methods is listed in Table I. It shows that P-Net achieves
the best accuracy for unseen fetal lungs and maternal kidneys
with average machine time 0.16s.

3) Unsupervised Image-Specific Fine-Tuning: For
unsupervised refinement, the initial segmentation obtained by
P-Net was refined by CRF, BIFSeg(-w) and BIFSeg without
additional scribbles, respectively. The results are shown in
Fig. 6. The second to fourth rows show the foreground
probability obtained by P-Net before and after the fine-tuning.
In the second row, the initial output of P-Net has a probability
around 0.5 for many pixels, which indicates a high uncertainty.
After image-specific fine-tuning, most pixels in the outputs
of BIFSeg(-w) and BIFSeg have a probability close to 0.0 or
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Fig. 5. Visual comparison of initial segmentation of multiple organs from
fetal MRI with a bounding box. All the methods use the same bounding
box for each test instance. Note that fetal lungs and maternal kidneys
are previously unseen objects but P-Net works well on them.

TABLE I
QUANTITATIVE COMPARISON OF INITIAL FETAL MRI SEGMENTATION

FROM A BOUNDING BOX. Tm IS THE MACHINE TIME. ∧ DENOTES

PREVIOUSLY UNSEEN OBJECTS. IN EACH ROW, BOLD FONT

DENOTES THE BEST VALUE. * DENOTES p-VALUE < 0.05
COMPARED WITH THE OTHERS

1.0. The remaining rows show the outputs of P-Net and the
three refinement methods, respectively. The visual comparison
shows that BIFSeg performs better than P-Net + CRF and
BIFSeg(-w). Quantitative measurements are presented in
Table II. It shows that BIFSeg achieves a larger improvement
of accuracy from the initial segmentation when compared with
the use of CRF or BIFSeg(-w). In this 2D case, BIFSeg takes
0.72s in average for unsupervised image-specific fine-tuning.

4) Supervised Image-Specific Fine-Tuning: Fig. 7 shows
examples of supervised refinement with additional scribbles.
The same initial segmentation and scribbles are used
for P-Net + CRF, BIFSeg(-w) and BIFSeg. All these
methods improve the segmentation. However, some large
mis-segmentations can still be observed for P-Net + CRF
and BIFSeg(-w). In contrast, BIFSeg achieves better results
with the same set of scribbles. For a quantitative comparison,
we measured the segmentation accuracy after a single round
of refinement using the same set of scribbles. The result
is shown in Table III. BIFSeg achieves significantly better

Fig. 6. Visual comparison of P-Net and three unsupervised refinement
methods for fetal MRI segmentation. The foreground probability is visu-
alized by heatmap.

TABLE II
QUANTITATIVE COMPARISON OF P-NET AND THREE UNSUPERVISED

REFINEMENT METHODS FOR FETAL MRI SEGMENTATION. Tm IS THE

MACHINE TIME FOR REFINEMENT. ∧ DENOTES PREVIOUSLY UNSEEN

OBJECTS. IN EACH ROW, BOLD FONT DENOTES THE BEST VALUE.
* DENOTES p-VALUE < 0.05 COMPARED WITH THE OTHERS

accuracy (p-value < 0.05) for the placenta, and previously
unseen fetal lungs and maternal kidneys compared with
P-Net + CRF and BIFSeg(-w). Fig. 8 shows a visual
comparison of unsupervised and supervised fine-tuning of
BIFSeg for the same maternal kidney. Table II and Table III
show that supervised fine-tuning achieves 3-5 percentage
points higher Dice than unsupervised fine-tuning.

5) Comparison With Other Interactive Methods: The two
users (an Obstetrician and a Radiologist) used Slic-Seg [21],
GrabCut [20], Random Walks [18] and BIFSeg for the fetal
MRI segmentation tasks respectively. For each image, the seg-
mentation was refined interactively until it was accepted by
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Fig. 7. Visual comparison of P-Net and three supervised refinement
methods for fetal MRI segmentation. The same initial segmentation and
scribbles are used for P-Net + CRF, BIFSeg(-w) and BIFSeg.

Fig. 8. Unsupervised and supervised fine-tuning results of BIFSeg for
the same instance of previously unseen maternal kidneys. (a) shows
the user-provided bounding box. (b) is the initial output of P-Net and
(e) is the result of unsupervised fine-tuning. (c) and (d) show user-
provided scribbles for supervised fine-tuning, and (f) and (g) are their
corresponding results.

the user. The user time and final accuracy of are presented in
Fig. 9. It shows that BIFSeg takes noticeably less user time
with similar or higher accuracy compared with the other three
interactive segmentation methods.

C. 3D Segmentation of Brain Tumors From
T1c and FLAIR

1) Data: We used the 2015 Brain Tumor Segmentation
Challenge (BRATS) training set [31]. The ground truth
were manually delineated by experts. This dataset included

TABLE III
QUANTITATIVE COMPARISON OF P-NET AND THREE SUPERVISED

REFINEMENT METHODS WITH SCRIBBLES FOR FETAL MRI
SEGMENTATION. Tm IS THE MACHINE TIME FOR REFINEMENT.
∧ DENOTES PREVIOUSLY UNSEEN OBJECTS. IN EACH ROW,

BOLD FONT DENOTES THE BEST VALUE. * DENOTES

p-VALUE < 0.05 COMPARED WITH THE OTHERS

Fig. 9. User time and Dice score of different interactive methods for fetal
MRI segmentation. ∧ denotes previously unseen objects for BIFSeg.

Fig. 10. Visual comparison of initial segmentation of brain tumors from
a 3D bounding box. The whole tumor in FLAIR is previously unseen in
the training set. All these methods use the same bounding box for each
test image.

274 scans from 198 patients. Each scan used multiple
MR sequences with different contrasts. T1c highlights the
tumor without peritumoral edema, designated “tumor core”
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Fig. 11. Visual comparison of PC-Net and unsupervised refinement methods without additional scribbles for 3D brain tumor segmentation. The
same initial segmentation obtained by PC-Net is used by different refinement methods. (a) Tumor core in T1c (previously seen). (b) Whole tumor in
FLAIR (previously unseen).

as per [31]. FLAIR highlights the tumor with peritumoral
edema, designated “whole tumor” as per [31]. We investigate
interactive segmentation of the tumor core from T1c images
and the whole tumor from FLAIR images, which is different
from previous works on automatic multi-label and multi-modal
segmentation [7], [32]. We randomly selected T1c and FLAIR
images of 19, 25 patients with a single scan for validation and
testing, respectively, and used T1c images of the remaining
patients for training. Here the tumor core in T1c images was
previously seen while the whole tumor in FLAIR images was
previously unseen for the CNNs. All these images had been
skull-stripped and resampled to isotropic 1mm3 resolution.
The maximal side length of bounding boxes of the tumor
core and the whole tumor ranged from 40 to 100 voxels,
we resized the cropped image region inside a bounding box
so that its maximal side length was 80 voxels. Parameter
setting was λ = 10.0, σ = 0.1, t0 = 0.2, t1 = 0.6, ε = 0.2,
ω = 5.0 based on a grid search with the training data (i.e.,
whole tumor images were not used for parameter learning).

2) Initial Segmentation Based on PC-Net: Fig. 10(a) shows
an initial result of tumor core segmentation from T1c with a
user-provided bounding box. Since the central region of the
tumor has a low intensity that is similar to the background,
3D GrabCut obtains large under-segmentations. DeepMedic

TABLE IV
DICE SCORE OF INITIAL SEGMENTATION OF BRAIN TUMORS FROM A

3D BOUNDING BOX. ALL THE METHODS USE THE SAME BOUNDING

BOX FOR EACH TEST IMAGE. ∧ DENOTES PREVIOUSLY UNSEEN

OBJECTS. IN EACH ROW, BOLD FONT DENOTES THE BEST VALUE.
* DENOTES p-VALUE < 0.05 COMPARED WITH THE OTHERS

leads to some over-segmentations. HighRes3DNet and PC-Net
obtain similar results, but PC-Net is less complex and has
lower memory consumption. Fig. 10(b) shows an initial
segmentation result of previously unseen whole tumor from
FLAIR. 3D GrabCut fails to get high accuracy due to intensity
inconsistency in the tumor region, and the CNNs outperform
3D GrabCut, with DeepMedic and PC-Net performing better
than HighRes3DNet. A quantitative comparison is presented
in Table IV. It shows that the performance of DeepMedic is
low for T1c but high for FLAIR, and that of HighRes3DNet is
the opposite. This is because DeepMedic has a small receptive
field and tends to rely on local features. It is difficult to use
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Fig. 12. Visual comparison of PC-Net and three supervised refinement methods with scribbles for 3D brain tumor segmentation. The refinement
methods use the same initial segmentation and set of scribbles. (a) Tumor core in T1c (previously seen). (b) Whole tumor in FLAIR (previously
unseen).

local features to deal with T1c due to its complex appearance
but easier to deal with FLAIR since the appearance is
less complex. HighRes3DNet has a more complex model
and tends to over-fit the tumor core. In contrast, PC-Net
achieves a more stable performance on the tumor core and
the previously unseen whole tumor. The average machine
time for 3D GrabCut, DeepMedic, and PC-Net is 3.87s,
65.31s and 3.83s, respectively (on the laptop), and that for
HighRes3DNet is 1.10s (on the cluster).

3) Unsupervised Image-Specific Fine-Tuning: Fig. 11 shows
unsupervised fine-tuning for brain tumor segmentation without
additional user interactions. In Fig. 11(a), the tumor core
is under-segmented in the initial output of PC-Net. CRF
improves the segmentation to some degree, but large areas
of under-segmentation still exist. The segmentation result of
BIFSeg(-w) is similar to that of CRF. In contrast, BIFSeg
performs better than CRF and BIFSeg(-w). A similar situation
is observed in Fig. 11(b) for segmentation of previously unseen
whole tumor. A quantitative comparison of these methods is

TABLE V
QUANTITATIVE COMPARISON OF PC-NET AND UNSUPERVISED

REFINEMENT METHODS WITHOUT ADDITIONAL SCRIBBLES FOR

3D BRAIN TUMOR SEGMENTATION. Tm IS THE MACHINE TIME

FOR REFINEMENT. ∧ DENOTES PREVIOUSLY UNSEEN OBJECTS.
IN EACH ROW, BOLD FONT DENOTES THE BEST VALUE.

* DENOTES p-VALUE < 0.05 COMPARED WITH THE OTHERS

shown in Table V. BIFSeg improves the average Dice score
from 82.66% to 86.13% for the tumor core, and from 83.52%
to 86.29% for the whole tumor.

4) Supervised Image-Specific Fine-Tuning: Fig 12 shows
refined results of brain tumor segmentation with additional
scribbles provided by the user. The same initial segmentation
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TABLE VI
QUANTITATIVE COMPARISON OF PC-NET AND THREE SUPERVISED

REFINEMENT METHODS WITH ADDITIONAL SCRIBBLES FOR 3D BRAIN

TUMOR SEGMENTATION. Tm IS THE MACHINE TIME FOR REFINEMENT.
∧ DENOTES PREVIOUSLY UNSEEN OBJECTS. IN EACH ROW,

BOLD FONT DENOTES THE BEST VALUE. * DENOTES

p-VALUE < 0.05 COMPARED WITH THE OTHERS

Fig. 13. User time and Dice score of different interactive methods for
3D brain tumor segmentation. ∧ denotes previously unseen objects for
BIFSeg.

based on PC-Net and the same scribbles are used by CRF,
BIFSeg(-w) and BIFSeg. It can be observed that CRF and
BIFSeg(-w) correct the initial segmentation moderately.
In contrast, BIFSeg achieves better refined results for both
the tumor core in T1c and the whole tumor in FLAIR. For
a quantitative comparison, we measured the segmentation
accuracy after a single round of refinement using the same
set of scribbles based on the same initial segmentation. The
result is presented in Table VI, showing BIFSeg significantly
outperforms CRF and BIFSeg(-w) in terms of Dice. Table V
and Table VI show that supervised fine-tuning achieves
1.3-1.8 percentage points higher Dice than unsupervised
fine-tuning for brain tumor segmentation.

5) Comparison With Other Interactive Methods: The two
users (an Obstetrician and a Radiologist) used GeoS [19],
GrowCut [28], 3D GrabCut [29] and BIFSeg for the brain
tumor segmentation tasks respectively. The user time and final
accuracy of these methods are presented in Fig. 13. It shows
that these interactive methods achieve similar final Dice scores
for each task. However, BIFSeg takes significantly less user
time, which is 82.3s and 68.0s in average for the tumor core
and the whole tumor, respectively.

IV. DISCUSSION AND CONCLUSION

Applying pre-trained models to previously unseen objects
is a zero-shot learning problem [33]. While previous works
studied zero-shot learning for image classification [34], this
paper focused on the context of medical image segmentation.
For 2D images, our P-Net was trained with the placenta and
fetal brain only, but it performed well on previously unseen
fetal lungs and maternal kidneys. There are two main reasons

for this. First, these four organs were imaged with the same
protocol. They have similar signal to noise ratio and share
some common features, such as saliency, contrast and hyper-
intensity. Second, compared with FCN and U-Net, P-Net has
far fewer parameters without reduction of the receptive field.
Therefore, it can generalize better to previously unseen objects.
Similarly, the tumor core and whole tumor have some common
features, e.g., lower or higher intensity than the remaining
brain regions. PC-Net is more compact than HighRes3DNet
and less likely to achieve over-fitting, leading to better ability
to deal with the unseen whole tumor. Table IV shows that
DeepMedic achieves higher accuracy for the whole tumor. The
reason is that our 3D experiment tends to learn to recognize
hyper-intensity regions where local features have a higher
influence than global features, and the relatively smaller recep-
tive field of DeepMedic is more suitable for this task compared
with the PC-Net and HighRes3DNet. However, DeepMedic
has a lower performance when dealing with the tumor core in
T1c images where the intensity is more inhomogeneous.

Our BIFSeg framework is theoretically applicable to
different CNN models. However, this research focuses on
interactive segmentation, where short inference time and
memory efficiency of the network are key requirements to
enable responsive user interfaces and to work on machines
with limited GPU resources. This is especially critical for
3D image segmentation. DeepMedic takes over 60 seconds
for inference, while HighRes3DNet has too large a memory
consumption to work on a laptop. They are thus less suitable
for interactive segmentation compared with PC-Net. We have
designed PC-Net with the explicit requirement of interactive
runtime on a laptop. To ensure that PC-Net was suitable
for the brain tumor segmentation task despite the gain in
efficiency, we compared the initial fully automated output
of PC-Net, DeepMedic and HighRes3D. Then, we only used
PC-Net for the interactive segmentation pipeline of BIFSeg.

Dealing with unseen objects is a major advantage
compared with traditional CNNs and even transfer
learning [25] or weakly supervised learning [3], since for some
objects it does not require annotated instances for training at
all. It therefore reduces the efforts needed for gathering and
annotating training data and can be applied to some unseen
organs directly. In this paper we only used at most two objects
in the training set. To further increase BIFSeg’s ability to
generalize, it is of interest to use a larger training set with
more patients, organs and image modalities, since a large
training set with a wide variety of different image contexts
helps to learn common features among different objects [35].

Our proposed framework accepts bounding boxes and
optional scribbles as user interactions. Bounding boxes in test
images are provided by the user, but they could potentially
be obtained by automatic detection [36] to further increase
efficiency. Experimental results show that the image-specific
fine-tuning improves the segmentation performance. This
acts as a post-processing step after the initial segmentation
and outperforms CRF. Though unsupervised fine-tuning
helps to correct small mis-segmentations when the initial
fully-automated performance is satisfactory, it may lead to
under-performance when dealing with some complex cases,
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considering the distribution mismatch between the training
and testing data. To address this problem, BIFSeg allows
optional supervised fine-tuning that leverages user interactions
to achieve higher robustness and accuracy. Since the scribbles
are provided only in mis-segmented areas, the variations of
position and length of scribbles are limited and much smaller
than that of freely drawn scribbles used in traditional methods
such as Random Walks [18] and Slic-Seg [21], and the output
of BIFSeg also varies slightly with varying scribbles, as shown
in Fig. 8. We found that taking advantage of uncertainty plays
an important role for the image-specific fine-tuning process.
The uncertainty is defined based on softmax probability and
geodesic distance to scribbles if scribbles are given. Previous
works [37] suggest that test-time dropout also provides
classification uncertainty. However, test-time dropout is less
suited for interactive segmentation since it leads to longer
computational time. In our experiments, hyper-parameters of
BIFSeg (e.g., λ) were fixed globally in the testing stage. Using
object-specific parameter adjustment or allowing the user to
tune these parameters for each test image in the interactive
procedure may help to get better segmentation accuracy.

In conclusion, we propose an efficient deep learning-based
framework for interactive 2D/3D medical image segmentation.
It uses a bounding box-based CNN for binary segmenta-
tion and can segment previously unseen objects. A unified
framework is proposed for both unsupervised and supervised
refinements of the initial segmentation, where image-specific
fine-tuning based on a weighted loss function is proposed.
Experiments on segmenting multiple organs from 2D fetal
MRI and brain tumors from 3D MRI show that our method
performs well on previously unseen objects and the image-
specific fine-tuning outperforms CRF. BIFSeg achieves sim-
ilar or higher accuracy with fewer user interactions and less
user time than traditional interactive segmentation methods.
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